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Abstract
In 2006, Kasahara and Murakami proposed two types of product-sum PKCs, KM-
Fundamental PKC and KM-CR, and presented challenge problems of them. How-
ever, Nguyen solve most of all of the challenge problems except KM-CR. From the
fact that the challenge problem of KM-CR has not been solved yet, KM-CR is con-
sidered to be an invulnerable scheme. In this paper, we describe KM-Fundamental
and Nguyen’s attack against KM-Fundamental. We then revisit KM-CR, discuss
about the security and resubmit the challenge problem. Finally we would like to call
for attack again.

1 Introduction

The security of most of the public-key cryptosystem depends on the difficulty of the factoring
problem, the discrete logarithm problem or the elliptic curve discrete logarithm problem. How-
ever, it is shown that the quantum computer can solve these problems in polynomial time[1].
Thus, it is desired to investigate other classes of PKCs(Public Key Cryptosystems) that do not
rely on the difficulty of these problems.

It is believed that even the quantum computer can not solve NP-hard problems. The subset-
sum problem and the shortest vector problem are known to be NP-hard. The former is used in
the knapsack PKC, and the latter, the product-sum PKC.

In 1978, the first knapsack PKC was proposed by Merkle and Hellman[2]. However, Shamir
proposed the attack that can compute the secret key of Merkle-Hellman scheme from the public
key[3, 4]. Merkle-Hellman scheme can be also broken with the low-density attack[5, 6]. Con-
cerning knapsack-type PKC, the various interesting schemes have been also proposed. In 1979,
another interesting knapsack-type PKC was proposed by Lu and Lee[7]. However, soon after
the proposal, Lu-Lee scheme was broken by Adleman and Rivest[8].

The product-sum PKC is considered to be the generalized version of the knapsack PKC.
The Lu-Lee scheme can be regarded as a kind of product-sum PKC. The authors proposed some
product-sum type PKCs[9, 10, 11].

Let us define here the rate R and the density D as follows:

R =
size of message (in bits)

size of ciphertext (in bits)
,

D =
size of pertinently enlarged message (in bits)

size of ciphertext (in bits)
.
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It is seen that the density D and the rate R are equal when the messages are not enlarged.
In the product-sum PKCs as well as in the knapsack schemes, the message can be computed

from the ciphetext with the low-density attack when the density is low[12]. Thus, it is important
that the message is enlarged before encryption in order to realize a high density. The authors
proposed several high-density product-sum type schemes[13, 14, 15].

In SCIS2006, Kasahara and Murakami proposed product-sum type PKCs, KM-Fundamental
PKC(Kasahara Murakami-Fundamental PKC)1 and KM-CR PKC(Kasahara Murakami-Chinese
Remainder PKC) which enlarge the message by powering by a small number like RSA scheme[15].
Indeed, these schemes are secure against the low-density attack because the density is sufficiently
high. The authors also presented challenge problems of these schemes and called for attack[?].
Nguyen solved the challenge problems except KM-CR by computing secret key as like Shamir’s
attack[16]. From the fact that the challenge problem of KM-CR has not been solved yet, KM-CR
can be considered invulnerable. Thus, it would be reasonable to resubmit the unsolved challenge
problem of KM-CR.

In this paper, we describe KM-Fundamental and Nguyen’s attack against the simple challenge
problem of KM-Fundamental. We then revisit KM-CR, discuss about the security and resubmit
the simple challenge problem of KM-CR.

2 KM-Fundamental PKC

In this section, we shall describe KM-Fundamental PKC where the system parameter e satisfies
e ≥ 3.

2.1 Generation of Secret Keys and Public Keys

Let us first define the symbols, where we let i = 1, 2, 3.:

|I|: size of integer I (in bits);

bi: random positive integer bases;

N : modulus of a random positive integer;

e: public system parameter;

di: inverse element of e modulo λ(bi);

λ(·): Carmichael function;

Spk: size of public key.

We shall now present the outline of the algorithm for the key generation.

[Key Generation Algorithm]

Step 1: Generate (h+ 1)-bit random integers2 b1, b2 and b3 such that gcd(bi, bj) = 1 for i �= j.

Step 2: Generate a secret key u for which the relation gcd(u,N) = 1 holds.

1In [15], KM-Fundamental PKC was proposed as KM(3)-II PKC.
2In order to realize a high density, we strongly recommend to use the following bi: bi = 2h + εi, where

1 � εi � 2h.
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Step 3: Let b′i = (b1b2b3)/bi. Given b1, b2, b3, u and N , the public keys a1, a2 and a3 are obtained
as follows:

ai = ub′i mod N. (1)

�

The secret keys and public keys are given as follows:� �

Secret key : b1, b2, b3, u,N

Public key : a1, a2, a3
� �

2.2 Encryption

Letting the messages, m1, m2 and m3 be h-bit positive integers, the encryption can be performed
in the following manner:

C = a1m
e
1 + a2m

e
2 + a3m

e
3. (2)

We see that the encryption can be performed very fast.

2.3 Decryption

Letting the intermediate message M be

M = b′1m
e
1 + b′2m

e
2 + b′3m

e
3, (3)

the decryption can be performed in the following manner:

[Decryption Algorithm]

Step 1: The intermediate message M can be obtained as follows:

M = u−1C mod N. (4)

Step 2: The messages m1, m2 and m3 can be obtained as follows:

mi = (b′−1
i M)di mod bi, (5)

where di ≡ e−1 (mod λ(bi)).

�

We see that the decryption can be performed also very fast.

2.4 Design Conditions

Condition 1 (Decryption)

M < N. (6)

Condition 2 (Density over 1)

|C| < |me
1|+ |me

2|+ |me
3|. (7)
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The size of each term of M can be estimated as |b′ime
i | � (e+2)h bit. By adding the number

of bits of carrying-up, the size of the intermediate message M can be estimated as (e+ 2)h+ 2
bit. From Condition 1, the size of the modulus N can be also estimated as (e + 2)h + 2 bit.
Consequently, the size of each term of C can be estimated as |aime

i | � (2e+2)h+2 bit. By adding
the number of bits of carrying-up, the size of ciphertext C can be estimated as (2e+2)h+4 bit.
The total size of message and that of the pertinently enlarged message are 3h bit and 3eh bit,
respectively. Thus the rate R and the density D are given by

R =
3h

(2e+ 2)h+ 4
, (8)

D =
3eh

(2e+ 2)h+ 4
. (9)

For satisfying Condition 2, we have
(e− 2)h > 4. (10)

We see that e ≥ 3 is required in order to obtain a high density over 1.

3 Nguyen’s Attack for KM-Fundamental

3.1 Simple Challenge Problem of KM-Fundamental

In [15], we proposed a simple challenge problem of KM-Fundamental with only 906-bit public
key and 480-bit ciphertext and called for attack. However, the problem has been broken by
Nguyen[16].

In this section, we represent the simple challenge problem of KM-Fundamental.

Simple Challenge Problem of KM-Fundamental� �
e = 3, |mi| = 60bit, |C| = 480bit, Spk = 906bit,
Public Key:
a1 = 1310094714668124925591873601933757628299390167237637612376300404621928503560543743327380847,
a2 = 4911492739270653495296997799033661439206560171382214769805578752497330214446509237880958602,
a3 = 1805283598097200756346687715307430041381092846290659965715777427018115107951883376245628902,
Ciphertext:
C = 306086605743791797042898796149556934673620331702695048787535732830248800184164373725407110546377
7766802940192216671167024933872475855670912918886.
The density D and the rate R are D � 1.125 and R � 0.375, respectively.

� �

3.2 Nguyen’s Attack for Simple Challenge Problem of KM-Fundamental

Nguyen proposed an attack against the above simple challenge problem of KM-Fundamental[16].
In this section, we shall describe the Nguyen’s attack.

In KM-Fundamental, it follows that

aibi ≡ ub1b2b3 (mod N) (11)

for i = 1, 2, 3 from Eq. (1). Thus, it follows that

aibi ≡ ajbj (mod N) (12)

for all i, j. Thus,

a1b1 − a3b3 = c1N ; (13)

a2b2 − a3b3 = c2N, (14)
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where c1 and c2 are approximately h-bit integers. Consequently, the following equation holds:

a1b1c2 − a2b2c1 + a3b3(c1 − c2) = 0. (15)

In other words, the secret vector s = (b1c2,−b2c1, b3(c1 − c2)) belongs to the lattice L spanned
by the following row matrix: ⎛⎝λa1 1 0 0

λa2 0 1 0
λa3 0 0 1

⎞⎠ , (16)

where λ is an arbitrary integer.
Using a lattice reduction algorithm to L for an appropriately-chosen large integer λ on this

challenge problem3, the secret vector s can be obtained as the shortest vector of the reduced
basis as follows:

s = ±(675631984421773376801865248254577696,

107708622938802140442523580109680195,

− 783340641250499071658778379692898501)

= ±(25× 14947× 1225198472471× 1152921508682981069,

5× 37× 504985603095401× 1152921527016650147,

679439666749418369× 1152921561083068229)

It is seen that the largest prime factor of each component is very close to 260 = 115292150
4606846976. He thus guess that

b1 = 1152921508682981069,

b2 = 1152921527016650147,

b3 = 1152921561083068229.

He can deduce

N = 6111108222166353202117193380726979268494148331298450149496938577021365606

023520906499789179

from N gcd(c1, c2) = gcd(a1b1 − a3b3, a2b2 − a3b3). The b′i’s are easily deduced from the bi’s:

b′1 = b2b3 = 1329228086734311109895368248223879663,

b′2 = b1b3 = 1329228065597028736107232068842356801,

b′3 = b1b2 = 1329228026321122605582605774197067143.

He thus obtain:

u ≡ aib
′
i
−1

(mod N)

≡ 1475265584771790975678842567392156689003436050343184113092218502778885039

528569736575007537.

3Nguyen could solve the problem by setting λ = 10100.
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He then recovered the plaintext as

m1 = 1019888794176532808,

m2 = 623429283177510895,

m3 = 643459722121049246.

4 KM-CR PKC

In this section, we shall revisit KM-CR PKC which uses the Chinese remainder theorem.

4.1 Generation of Secret Keys and Public Keys

Let us first define the symbols: In the following, we let i = 1, 2, . . . , n.

v
(P )
i , v

(Q)
i :random positive integers;

b
(P )
i , b

(Q)
i :random positive integer bases;

P,Q :prime numbers;

N :composite modulus where N = PQ;

e :public system parameter;

d
(P )
i :inverse element of e modulo λ(b

(P )
i );

d
(Q)
i :inverse element of e modulo λ(b

(Q)
i ).

We shall now present the algorithm for key generation.

[Key Generation Algorithm]

Step 1: Generate random positive integers b
(P )
i and b

(Q)
i for i = 1, 2, . . . , n such that

b
(P )
i b

(Q)
i = 2h + εi, (17)

gcd(b
(P )
i , b

(Q)
i ) = 1, (18)

gcd(b
(P )
i , b

(P )
j ) = 1, for i �= j, (19)

where 1 � εi � 2h.

Step 2: Generate l-bit random positive integers4 v
(P )
i and v

(Q)
i for i = 1, 2, . . . , n such that

gcd(v
(P )
i , b

(P )
i ) = 1, (20)

gcd(v
(Q)
i , b

(Q)
i ) = 1. (21)

Step 3: Generate a secret key u for which the relation gcd(u,N) = 1 holds.

4v
(P )
i = 1 and v

(Q)
i = 1 for i = 1, 2, . . . , n can be possible. In this case the highest density can be obtained.
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Step 4: Let b
′(P )
i = (v

(P )
i

∏n
k=1 b

(P )
k )/b

(P )
i and b

′(Q)
i = (v

(Q)
i

∏n
k=1 b

(Q)
k )/b

(Q)
i . We can obtain

bi < N with the Chinese remainder theorem for i = 1, 2, . . . , n as follows:

b′i ≡
{
b
′(P )
i (mod P ),

b
′(Q)
i (mod Q).

(22)

Step 5: Given b′i, u and N , the public keys ai for i = 1, 2, . . . , n are obtained as follows:

ai = ub′i mod N. (23)

�

The secret keys and public keys are given as follows:� �

Secret key : b
(P )
i , b

(Q)
i , v

(P )
i , v

(Q)
i , u,N, P,Q

Public key : ai
� �

4.2 Encryption

Letting the messages, mi be h-bit positive integers for i = 1, 2, . . . , n. The ciphertext, C ∈ Z is
obtained as follows:

Encryption can be performed in the following manner:

C =

n∑
k=1

akm
e
k. (24)

We see that the encryption can be performed very fast.

4.3 Decryption

Decryption can be performed in the following manner:
Let the intermediate messages M (P ) and M (Q) be

M (P ) =

n∑
k=1

b
′(P )
k me

k, (25)

M (Q) =
n∑

k=1

b
′(Q)
k me

k. (26)

[Decryption Algorithm]

Step 1: The intermediate messages M (P ) and M (Q) can be obtained as follows:

M (P ) = u−1C mod P, (27)

M (Q) = u−1C mod Q. (28)
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Step 2: Letting

m
(P )
i = mi mod b

(P )
i , (29)

m
(Q)
i = mi mod b

(Q)
i , (30)

m
(P )
i and m

(P )
i can be obtained as follows:

m
(P )
i = (b

′(P )
i

−1
M)d

(P )
i mod b

(P )
i , (31)

m
(Q)
i = (b

′(Q)
i

−1
M)d

(Q)
i mod b

(Q)
i , (32)

where ed
(P )
i ≡ 1 (mod λ(b

(P )
i )) and ed

(Q)
i ≡ 1 (mod λ(b

(Q)
i )). Thus the messages

mi < b
(P )
i b

(Q)
i for i = 1, 2, . . . , n can be obtained from m

(P )
i and m

(Q)
i with the Chinese

remainder theorem:

mi ≡
{
m

(P )
i (mod b

(P )
i ),

m
(Q)
i (mod b

(Q)
i ).

(33)

�

We also see that the decryption can be performed very fast.

4.4 Design Conditions

Condition 3 (Decryption)

M (P ) < P, (34)

M (Q) < Q. (35)

Condition 4 (Density over 1)

|C| <
n∑

k=1

|me
k|. (36)

Assuming that |b(P )
i | = |b(Q)

i | = h/2, the size of each term of M (P ) can be estimated by

|b′(P )
i me

i | � (e+n/2−1/2)h+ l bit. By adding the number of bits of carrying-up, the size of the
intermediate message M (P ) can be estimated by (e+ n/2− 1/2)h+ l+ 2 bit. The size of M (Q)

can be similarly estimated by (e + n/2 − 1/2)h + l + 2 bit. The size of the modulus N can be
estimated by (2e+n−1)h+2l+4 bit. Consequently, the size of each term of C can be estimated
by |aime

i | � (3e + n − 1)h + 2l + 4 bit. By considering the number of bits of carrying-up, the
size of the ciphertext C can be estimated by (3e+n− 1)h+2l+6 bit. The total size of message
and that of pertinently enlarged message are nh bit and neh bit, respectively. Thus the density
R and the rate D are represented by

R =
nh

(3e+ n− 1)h+ 2l + 6
, (37)

D =
neh

(3e+ n− 1)h+ 2l + 6
. (38)

8

― 26 ―― 26 ―



From Condition 4, D > 1 must be required to be secure against the low-density attack. It is
required that

neh > (3e+ n− 1)h. (39)

Consequently, we have

n >
3e− 1

e− 1
. (40)

We see that n ≥ 5 is required when e = 3 and that n ≥ 4 is required when e = 5, in order to
obtain a high density over 1. It is recommended that e = 3 and n = 5 in order to obtain a
relatively high rate.

5 Discussions

In this subsection, we shall discuss about the security on KM-CR PKC.

5.1 Security against Low-Density Attack

Letting (me
1,m

e
2,m

e
3) be (x1, x2, x3), we see that the deciphering KM-CR PKC is equivalent to

the solving of the following linear Diophantine equation:

C = a1x1 + a2x2 + a3x3. (41)

Evidently, there exists many solutions of Eq.(41) when D > 1 holds. In KM-CR PKC, the ratio
of the spaces required for the enlarged message and ciphertext is given approximately by 23eh :
2(3e+n−1)h+2l+6 � 2eh : 1. Thus the total number of different solutions can be approximately
given by E = 2eh. For the purpose of only solving Eq.(41), it is required only to obtain an
arbitrary solution among many solutions. On the other hand, when deciphering KM-CR PKC, it
is required to obtain one and only one correct solution that coincides with the original plaintext.
Thus obtaining correct solution in KM-CR PKC can be considered more difficult compared with
the solving of linear Diophantine equation of Eq.(41) and would be made difficult by letting E
sufficiently large. We can conclude that KM-CR PKC is invulnerable to LDA.

5.2 Security against Exhaustive Search

In KM-CR PKC, the ciphertext C is given by

C =

n∑
k=1

aim
e
i . (42)

When m̂k = mk holds for k = 3, . . . , n, we obtain the following ciphertext C̃ which is
equivalent to that of the two terms public key cryptosystem:

C̃ = a1m
e
1 + a2m

e
2. (43)

It is easy to see that the ciphertext C̃ can be easily deciphered. Thus in order to make the
proposed KM-CR PKC invulnerable to the exhaustive search on mi, it is recommended that mi

satisfy the following:
n∑

k=3

|mk| ≥ 128 (in bits). (44)

Thus in order to let KM-CR PKC be invulnerable to the exhaustive search on mi, it is
recommended that mi satisfy the following:

|mi| ≥ 43 (in bits). (45)
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5.3 Security on Secret Keys

Nguyen’s attack for computing secret keys can be generalized as follows.
From Eq.(1), the following relation holds for i �= j:

aib
′
j ≡ ajb

′
i (mod N). (46)

Thus

a1b
′
2 − a2b

′
1 = c1N, (47)

a1b
′
3 − a3b

′
1 = c2N, (48)

where c1 and c2 are approximately h-bit integers. By extinguishing N , one can obtain the
following equation:

a1(c2b
′
2 − c1b

′
3)− a2c2b

′
1 + a3c1b

′
1 = 0. (49)

In KM-Fundamental, the secret keys bi can be easily obtained because the unknown values
c2b

′
2 − c1b

′
3, c2b

′
1 and c1b

′
1 are relatively small compared with a1, a2 and a3.

On the other hand, in KM-CR PKC, the unknown values c2b
′
2−c1b

′
3, c2b

′
1 and c1b

′
1 are larger

than a1, a2 and a3. Thus, we can conclude that KM-CR can not be broken with Nguyen’s secret
key attack.

6 Resubmission of Simple Challenge Problem of KM-CR

In [15], we proposed a simple challenge problem of KM-CR with only 2060-bit public key and
530-bit ciphertext and called for attack. However, the problem has not been broken yet, even
the parameters are relatively small.

In this section, we resubmit the simple challenge problem of KM-CR and call for attack
again. In this example, the size of the public key in KM-CR PKC is equal to that in RSA PKC.
However, the sizes of message and ciphertext in KM-CR PKC are respectively shortened by a
factor of about 10 and about 2 compared with those in the conventional RSA cryptosystem.

Simple Challenge Problem of KM-CR� �
e = 3, n = 5, |mi| = 40bit, |C| = 530bit, Spk = 2060bit,
Public Key:
a1 = 39289615646555220983624624152641164327050891600216569766813078490606420429168503597989971620590169
15283422816873031893581926,
a2 = 65880387042816329369254546696325971113046208767955847863067719476557846295685667464794185276243519
75634394641852780618742064,
a3 = 12025236177385081947406022996952283492894995861236795771621537939679609407351881247091505326947303
728492617846000595035152769,
a4 = 86892217143493777452938926824516763815561438665275331400246224065884705141541462878448822144974455
36903069208756517344413837,
a5 = 89835813406201984217383752893523261718292171205667813021478497050688650249942767382178613409287174
23864038078495017862145840
Ciphertext:
C = 308785037719256782056777621437323050096998700176880936853932977548742955714015745998791040673637235
6420209638935604271583338361460294341628115382057656194431948.� �

The density D and the rate R are D � 1.124 and R � 0.375, respectively.

7 Conclusion

In this paper, we have described KM-Fundamental PKC and Nguyen’s attack for the simple
challenge problem of KM-Fundamental. We have then revisited KM-CR PKC which has not
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been solved yet and discussed the security of KM-CR. Moreover, we have resubmitted the simple
challenge problem of KM-CR and call for attack again.

One of the important advantages of KM-CR is that the encryption and decryption can be
performed very fast. We sincerely wish the resubmitted simple challenge problem be solved by
elegant methods.
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